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Abstract
In the present work, we establish a simple relation between the Dirac equation
with a scalar and an electromagnetic potential in a two-dimensional case and
a pair of decoupled Vekua equations. In general, these Vekua equations
are bicomplex. However, we show that the whole theory of pseudoanalytic
functions without modifications can be applied to these equations under a
certain nonrestrictive condition. As an example we formulate the similarity
principle which is the central reason why a pseudoanalytic function and as a
consequence a spinor field depending on two space variables share many of
the properties of analytic functions. One of the surprising consequences of
the established relation with pseudoanalytic functions consists in the following
result. Consider the Dirac equation with a scalar potential depending on one
variable with fixed energy and mass. In general, this equation cannot be solved
explicitly even if one looks for wavefunctions of one variable. Nevertheless,
for such Dirac equation, we obtain an algorithmically simple procedure for
constructing in explicit form a complete system of exact solutions (depending
on two variables). These solutions generalize the system of powers 1, z, z2, . . .

in complex analysis and are called formal powers. With their aid any regular
solution of the Dirac equation can be represented by its Taylor series in formal
powers.

PACS numbers: 02.30.Fn, 02.30.Jr
Mathematics Subject Classification: 30G20, 30G35, 35C05

1. Introduction

The Dirac equation with a fixed energy and the Vekua equation describing pseudoanalytic
(= generalized analytic) functions are both first-order elliptic systems, and it would be quite
natural to expect a deep interrelation between their theories especially in the case when
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all potentials and wavefunctions in the Dirac equation depend on two space variables only.
Nevertheless, there is not much work done in this direction1 due to the fact that any of the
traditional matrix representations of the Dirac operator does not allow us to visualize a relation
between the Dirac equation in the two-dimensional case and the Vekua equation. The Dirac
equation is a system of four complex equations which does not decouple in a two-dimensional
situation but decouples in the one-dimensional case only.

In the present work, we establish a simple relation between the Dirac equation with a
scalar and an electromagnetic potential in a two-dimensional case from one side and a pair of
decoupled Vekua equations from the other. As a first step, we use the matrix transformation
proposed in [9] (see also [10, 14]) which allows us to rewrite the Dirac equation in a covariant
form as a biquaternionic equation. This is not our aim to discuss here the advantages of our
biquaternionic reformulation of the Dirac equation compared with its other representations
(the interested reader can find some of the arguments in [10]). We point out only that our
transformation is C-linear as well as the resulting Dirac operator, which is not the case for
a better known biquaternionic reformulation of the Dirac operator introduced by Lanczos in
[15] (see [6, 10] for more references). Moreover, in the time-dependent case, with a vanishing
electromagnetic potential, our Dirac operator is real quaternionic.

Here, we exploit another attractive facet of our biquaternionic Dirac equation. In the
two-dimensional case, it decouples into two separate Vekua equations. In general, these
Vekua equations are bicomplex. However, we show that the whole theory of pseudoanalytic
functions without modifications can be applied to these equations under a certain nonrestrictive
condition. As an example, we formulate the similarity principle which is the central reason
why a pseudoanalytic function and as a consequence a spinor field depending on two space
variables share many of the properties of analytic functions; e.g., they are either identically
zero or have isolated zeros. In this way, more results of the theory developed in [19] and in
posterior works (see, e.g., [2, 18]) can be applied to the two-dimensional Dirac equation with a
scalar and an electromagnetic potential. Nevertheless, in the present work, we concentrate on
another non-trivial and surprising consequence of the established relation with pseudoanalytic
functions. Consider the Dirac equation with a scalar potential depending on one variable with
fixed energy and mass. In general, this equation cannot be solved explicitly even if one looks
for wavefunctions of one variable. Nonetheless, the result of this work is an algorithmically
simple procedure for obtaining in explicit form a complete system of exact solutions depending
on two variables for such Dirac equation. This system of solutions is a generalization of the
system of powers 1, z, z2, . . . in complex analysis and as such they are not appropriate for
studying the Dirac equation on the whole plane. However, the very fact that it is always
possible to obtain explicitly a complete system of exact solutions of the Dirac equation with
scalar potential of one variable as well as the hope to be able to obtain explicitly not only the
generalizations of positive powers but also those of the negative ones makes in our opinion
this approach attractive and promising. The system of exact solutions for the Dirac equation
with a one-dimensional scalar potential is obtained due to the proposed reduction of the Dirac
equation to Vekua equations and due to L Bers’ theory of Taylor series in formal powers.

In section 2, we introduce notation. In section 3, we give the biquaternionic reformulation
of the Dirac equation. Let us emphasize that our biquaternionic Dirac equation is completely
equivalent to the ‘traditional’ Dirac equation written in γ -matrices, we have a simple matrix
transformation giving us a relation between their solutions. In section 4, we show that in a
two-dimensional situation the Dirac equation with a scalar and an electromagnetic potential

1 We refer to the work [1] where the theory of pseudoanalytic functions was used in a way completely different from
ours for studying the two-dimensional Dirac equation with a scalar or a pseudoscalar potential.
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decouples into a pair of bicomplex Vekua equations. We establish that if one of the coefficients
in such Vekua equation has not zeros and does not turn into a zero divisor at any point of
the domain of interest, the solutions will not be zero divisors either, and the whole theory
of generalized analytic functions without modifications is applicable to the bicomplex Vekua
equation.

In section 5, we adapt some definitions and results from L Bers’ theory to bicomplex
pseudoanalytic functions. Section 6 is dedicated to a special class of Vekua equations which
have been studied recently (see [11, 12]) due to their close relation to stationary Schrödinger
equations. In section 7, we show that the Dirac equation with a scalar potential depending on
one space variable can be represented as a Vekua equation from the special class mentioned
above. Here, we should note that the case of the scalar potential is only an example. The
same is true, for example, for the electric potential. To the Vekua equation we apply L
Bers’ procedure for constructing corresponding formal powers which as was mentioned above
are exact solutions of the Vekua equation and generalize the system of analytic functions
1, z, z2, . . . . With their aid any regular solution of the Vekua equation can be represented by
its Taylor series in formal powers.

2. Preliminaries

We denote by H(C) the algebra of complex quaternions (= biquaternions). The elements of
H(C) have the form q = ∑3

k=0 qkek where {qk} ⊂ C, e0 is the unit and {ek|k = 1, 2, 3} are
the standard quaternionic imaginary units.

We denote the imaginary unit in C by i as usual. By definition i commutes with
ek, k = 0, 3. We will also use the vector representation of q ∈ H(C): q = Sc(q) + Vec(q),
where Sc(q) = q0 and Vec(q) = −→q = ∑3

k=1 qkek. The quaternionic conjugation is defined
as follows: q = q0 − −→q .

By Mp we denote the operator of multiplication by p from the right-hand side

Mpq = q · p.

The interested reader can find more information on complex quaternions, e.g., in [10] or [14].
Let q be a complex quaternion-valued differentiable function of x = (x1, x2, x3). Denote

Dq =
3∑

k=1

ek

∂

∂xk

q.

This operator is sometimes called the Moisil-Theodorescu operator or the Dirac operator but
the truth is that it was introduced already by W R Hamilton himself and studied in a great
number of works (see, e.g., [5, 7, 8, 10, 14]).

3. Quaternionic reformulation of the Dirac equation

Consider the Dirac operator with scalar and electromagnetic potentials

D = γ0∂t +
3∑

k=1

γk∂k + i

(
m + pelγ0 +

3∑
k=1

Akγk + psc

)
where γj , j = 0, 1, 2, 3 are usual γ -matrices (see, e.g., [4, 17]), m ∈ R, pel, Ak and psc are
real-valued functions.

In [9], a simple matrix transformation was obtained which allows us to rewrite the classical
Dirac equation in quaternionic terms.
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Let us introduce an auxiliary notation f̃ := f (t, x1, x2,−x3). The domain G̃ is
assumed to be obtained from the domain G ⊂ R

4 by the reflection x3 → −x3. The
transformation announced above we denote as A and define it in the following way. A
function � : G ⊂ R

4 → C
4 is transformed into a function F : G̃ ⊂ R

4 → H(C) by the rule

F = A[�] := 1
2 (−(�̃1 − �̃2)e0 + i(�̃0 − �̃3)e1 − (�̃0 + �̃3)e2 + i(�̃1 + �̃2)e3).

The inverse transformation A−1 is defined as follows:

� = A−1[F ] = (−iF̃ 1 − F̃ 2,−F̃0 − iF̃ 3, F̃ 0 − iF̃ 3, iF̃1 − F̃ 2)
T .

Let us present the introduced transformations in a more explicit matrix form which relates the
components of a C

4-valued function � with the components of an H(C)-valued function F:

F = A[�] = 1

2


0 −1 1 0
i 0 0 −i

−1 0 0 −1
0 i i 0




�̃0

�̃1

�̃2

�̃3


and

� = A−1[F ] =


0 −i −1 0

−1 0 0 −i
1 0 0 −i
0 i −1 0




F̃ 0

F̃ 1

F̃ 2

F̃ 3

 .

Denote

R = D − ∂tM
e1 + a + M−i(p̃ele1−i(p̃sc+m)e2)

where a = i(Ã1e1 + Ã2e2 − Ã3e3). The following equality holds [10]:

R = Aγ1γ2γ3DA−1.

That is, a C
4-valued function � is a solution of the equation

D� = 0 in G

iff the complex quaternionic function F = A� is a solution of the quaternionic equation

RF = 0 in G̃.

Note that in the absence of the electromagnetic potential the operator R becomes real
quaternionic which is an important property (see [13]).

In what follows we assume that potentials are time independent and consider solutions
with fixed energy: �(t, x) = �ω(x) eiωt . The equation for �ω has the form

Dω�ω = 0 in Ĝ (1)

where Ĝ is a domain in R
3,

Dω = iωγ0 +
3∑

k=1

γk∂k + i

(
m + pelγ0 +

3∑
k=1

Akγk + psc

)
.

We have

Rω = Aγ1γ2γ3DωA−1,

where

Rω = D + a + Mb

with b = −i((p̃el + ω)e1 − i(p̃sc + m)e2). Thus, equation (1) turns into the complex
quaternionic equation

Rωq = 0 (2)

where q is a complex quaternion-valued function.
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4. The Dirac equation in a two-dimensional case as a bicomplex Vekua equation

Let us introduce the following notation. For any complex quaternion q we denote by Q1 and
Q2 its bicomplex components:

Q1 = q0 + q3e3 and Q2 = q2 − q1e3.

Then q can be represented as follows: q = Q1 +Q2e2. For the operator D, we have D = D1 +
D2e2 with D1 = e3∂3 and D2 = ∂2 − ∂1e3. Note that b = Be2 with B = −(p̃sc + m) +
i(p̃el + ω)e3, a = A1 + A2e2 with A1 = a3e3 and A2 = a2 − a1e3.

We obtain that equation (2) is equivalent to the system

D1Q1 − D2Q2 + A1Q1 − A2Q2 − BQ2 = 0, (3)

D2Q1 + D1Q2 + A2Q1 + A1Q2 + BQ1 = 0, (4)

where Q1 and Q2 are bicomplex components of q. We stress that the system (3), (4) is
equivalent to the Dirac equation in γ -matrices (1).

Let us suppose all fields in our model to be independent of x3 and A1 = a3e3 ≡ 0. Then
the system (3), (4) decouples, and we obtain two separate bicomplex equations

D2Q2 = −A2Q2 − BQ2

and

D2Q1 = −A2Q1 − BQ1.

Denote ∂ = D2, a = −A2, b = −B,w = Q2,W = Q1, z = x + yk, where x = x2, y = x1

and for convenience we denote k = e3. Then we reduce the Dirac equation with
electromagnetic and scalar potentials independent of x3 to a pair of Vekua-type equations

∂w = aw + bw (5)

and

∂W = aW + bW. (6)

The difference between the bicomplex equations (5) and (6) and the usual complex Vekua
equations is revealed if only w or W can take values equal to bicomplex zero divisors (otherwise
equations (5) and (6) can be analysed following Bers–Vekua theory [3, 19]). Let us study this
possibility with the aid of the following pair of projection operators:

P + = 1
2 (1 + ik) and P − = 1

2 (1 − ik).

The set of bicomplex zero divisors, that is of nonzero elements q = q0 + q1k, {q0, q1} ⊂ C

such that

qq = (q0 + q1k) (q0 − q1k) = 0, (7)

we denote by S.

Lemma 1. Let q be a bicomplex number of the form q = q0 + q1k, {q0, q1} ⊂ C. If q ∈ S

then q = 2P +q0 or q = 2P −q0.

Proof. From (7) it follows that q2
0 + q2

1 = 0 which gives us that q1 = ±iq0. That is
q = q0(1 + ik) or q = q0(1 − ik). �

For other results on bicomplex numbers we refer to [16].
Let � denote a bounded, simply connected domain in the plane of the variable z.
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Theorem 2. Let b(z) /∈ S ∪ {0} ,∀z ∈ � and w,W be solutions of (5) and (6), respectively.
Then w(z) /∈ S and W(z) /∈ S,∀z ∈ �.

Proof. Assume that w(z) ∈ S for some z ∈ �. For definiteness, let w(z) = 2P +w0(z). Then
from (5) we have

∂P +w0 = aP +w0 + bP −w0.

Applying P − to this equality we find that P −b = 0 which is a contradiction. �

Thus, if the coefficient b does not have zeros and does not turn into a zero divisor at any
point of the domain of interest, the solutions of (5) and (6) will not be zero divisors either and
the whole theory of pseudoanalytic functions is applicable without changes to the bicomplex
equations (5) and (6). As an example, let us formulate one of the main results of the theory,
the similarity principle which is the basic tool for studying the distribution of zeros and of
singularities of pseudoanalytic functions as well as boundary value problems [19].

Theorem 3. Let w be a regular solution of (5) in a domain � and let b(z) /∈ S ∪ {0},∀z ∈ �.
Then the bicomplex function � = w · eh, where

h(z) = 1

2π

∫
�

g(τ) dτ

τ − z
,

g(z) =
a(z) + b(z)

w(z)

w(z)
if w(z) �= 0, z ∈ �,

a(z) + b(z) if w(z) = 0, z ∈ �

is a solution of the equation ∂� = 0 in �.

The proof of this theorem is completely analogous to that given in [19]. It would be
interesting to extend this result to the case of b being a zero divisor in the whole domain � or
in some points.

This theorem opens the way to generalize many classical results from theory of analytic
functions to the case of solutions of equations (5) and (6) by analogy with [19]. Nevertheless,
in the present work, we prefer to explore another possibility. Namely, we show how the
application of Bers’ theory of pseudoanalytic functions allows us to obtain explicitly a complete
system of solutions of the Dirac equation with a scalar potential depending on one variable.

5. Some definitions and results from Bers’ theory for bicomplex
pseudoanalytic functions

5.1. Generating pair, derivative and antiderivative

Following [3], we introduce the notion of a bicomplex generating pair.

Definition 4. A pair of bicomplex functions F = F0 + F1k and G = G0 + G1k, possessing in
� partial derivatives with respect to the real variables x and y, is said to be a generating pair
if it satisfies the inequality

Vec(FG) �= 0 in �.

The following expressions are called characteristic coefficients of the pair (F,G)

a(F,G) = −FGz − FzG

FG − FG
, b(F,G) = FGz − FzG

FG − FG
,
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A(F,G) = −FGz − FzG

FG − FG
, B(F,G) = FGz − FzG

FG − FG
,

where the subindex z or z means the application of ∂ or ∂ , respectively.
Every bicomplex function W defined in a subdomain of � admits the unique representation

W = φF + ψG where the functions φ and ψ are complex valued.
The (F,G)-derivative Ẇ = d(F,G)W

dz
of a function W exists and has the form

Ẇ = φzF + ψzG = Wz − A(F,G)W − B(F,G)W (8)

if and only if

φzF + ψzG = 0. (9)

This last equation can be rewritten in the following form:

Wz = a(F,G)W + b(F,G)W

which we call the bicomplex Vekua equation. Solutions of this equation are called (F,G)-
pseudoanalytic functions.

Remark 5. The functions F and G are (F,G)-pseudoanalytic and Ḟ ≡ Ġ ≡ 0.

Definition 6. Let (F,G) and (F1,G1) be two generating pairs in �. (F1,G1) is called
successor of (F,G) and (F,G) is called predecessor of (F1,G1) if

a(F1,G1) = a(F,G) and b(F1,G1) = −B(F,G).

The importance of this definition becomes obvious from the following statement.

Theorem 7. Let W be an (F,G)-pseudoanalytic function and let (F1,G1) be a successor of
(F,G). Then Ẇ is an (F1,G1)-pseudoanalytic function.

Definition 8. Let (F,G) be a generating pair. Its adjoint generating pair (F,G)∗ = (F ∗,G∗)
is defined by the formulae

F ∗ = − 2F

FG − FG
, G∗ = 2G

FG − FG
.

The (F,G)-integral is defined as follows:∫



W d(F,G)z = 1

2

(
F(z1) Sc

∫



G∗W dz + G(z1) Sc
∫




F ∗W dz

)
where 
 is a rectifiable curve leading from z0 to z1.

If W = φF + ψG is an (F,G)-pseudoanalytic function where φ and ψ are complex-
valued functions then∫ z

z0

Ẇ d(F,G)z = W(z) − φ(z0)F (z) − ψ(z0)G(z), (10)

and as Ḟ = Ġ = 0, this integral is path independent and represents the (F,G)-antiderivative
of Ẇ .
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5.2. Generating sequences and Taylor series in formal powers

Definition 9. A sequence of generating pairs {(Fm,Gm)} ,m = 0,±1,±2, . . . , is called a
generating sequence if (Fm+1,Gm+1) is a successor of (Fm,Gm). If (F0,G0) = (F,G), we
say that (F,G) is embedded in {(Fm,Gm)}.
Theorem 10. Let (F,G) be a generating pair in �. Let �1 be a bounded domain, �1 ⊂ �.
Then, (F,G) can be embedded in a generating sequence in �1.

Definition 11. A generating sequence {(Fm,Gm)} is said to have period µ > 0 if (Fm+µ,Gm+µ)

is equivalent to (Fm,Gm) that is their characteristic coefficients coincide.

Let W be an (F,G)-pseudoanalytic function. Using a generating sequence in which
(F,G) is embedded we can define the higher derivatives of W by the recursion formula

W [0] = W ; W [m+1] = d(Fm,Gm)W
[m]

dz
, m = 1, 2, . . . .

Definition 12. The formal power Z(0)
m (a, z0; z) with centre at z0 ∈ �, coefficient a and

exponent 0 is defined as the linear combination of the generators Fm,Gm with complex
constant coefficients λ,µ chosen so that λFm(z0) + µGm(z0) = a. The formal powers with
exponents n = 1, 2, . . . are defined by the recursion formula

Z(n+1)
m (a, z0; z) = (n + 1)

∫ z

z0

Z
(n)
m+1(a, z0; ζ ) d(Fm,Gm)ζ. (11)

This definition implies the following properties:

(1) Z(n)
m (a, z0; z) is an (Fm,Gm)-pseudoanalytic function of z.

(2) If a′ and a′′ are complex constants, then

Z(n)
m (a′ + ka′′, z0; z) = a′Z(n)

m (1, z0; z) + a′′Z(n)
m (k, z0; z).

(3) The formal powers satisfy the differential relations

d(Fm,Gm)Z
(n)
m (a, z0; z)

dz
= nZ

(n−1)
m+1 (a, z0; z).

(4) The asymptotic formulae

Z(n)
m (a, z0; z) ∼ a(z − z0)

n, z → z0

hold.

Assume now that

W(z) =
∞∑

n=0

Z(n)(an, z0; z) (12)

where the absence of the subindex m means that all the formal powers correspond to the same
generating pair (F,G), and the series converges uniformly in some neighbourhood of z0. It
can be shown that the uniform limit of pseudoanalytic functions is pseudoanalytic, and that a
uniformly convergent series of (F,G)-pseudoanalytic functions can be (F,G)-differentiated
term by term. Hence, the function W in (12) is (F,G)-pseudoanalytic and its rth derivative
admits the expansion

W [r](z) =
∞∑

n=r

n(n − 1) · · · (n − r + 1)Z(n−r)
r (an, z0; z).
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From this, the Taylor formulae for the coefficients are obtained

an = W [n](z0)

n!
. (13)

Definition 13. Let W(z) be a given (F,G)-pseudoanalytic function defined for small values
of |z − z0|. The series

∞∑
n=0

Z(n)(an, z0; z) (14)

with the coefficients given by (13) is called the Taylor series of W at z0, formed with formal
powers.

The Taylor series always represents the function asymptotically:

W(z) −
N∑

n=0

Z(n)(an, z0; z) = O(|z − z0|N+1), z → z0, (15)

for all N. This implies (since a pseudoanalytic function cannot have a zero of arbitrarily high
order without vanishing identically) that the sequence of derivatives {W [n](z0)} determines the
function W uniquely.

If the series (14) converges uniformly in a neighbourhood of z0, it converges to the
function W .

Theorem 14. The formal Taylor expansion (14) of a pseudoanalytic function in formal powers
defined by a periodic generating sequence converges in some neighbourhood of the centre.

6. Special class of Vekua equations

The following important class of Vekua equations was considered in [12]. Let f0 be a complex
valued (with respect to i), twice differentiable nonvanishing function defined on �. Consider
the equation

∂W = ∂f0

f0
W in �. (16)

Denote ν1 = �f0/f0.

Theorem 15 [12]. If W = W1 + W2k is a solution of (16) then W1 = ScW is a solution of
the stationary Schrödinger equation

−�W1 + ν1W1 = 0 in � (17)

and W2 = Vec W is a solution of the associated Schrödinger equation

−�W2 + ν2W2 = 0 in � (18)

where ν2 = 2(∂f0 · ∂f0)/f
2
0 − ν1.

Moreover, in [12], a simple formula was obtained which allows us for any given solution
W1 of (17) to construct such a solution W2 of (18) that W = W1 + W2k will be a solution of
(16) generalizing in this way the well-known procedure for constructing conjugate harmonic
functions in complex analysis.
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7. Dirac equation with a scalar potential

Let us show that the Dirac equation with a scalar potential depending on one real variable
reduces to a bicomplex Vekua equation of the form (16).

Let psc = p(x) and pel ≡ 0, Ak ≡ 0, k = 1, 2, 3. Then according to section 4, the Dirac
equation is equivalent to the pair of bicomplex Vekua equations

∂w = bw (19)

and

∂W = bW (20)

with b = p(x) + m − iωk.
Let f0 = exp(P (x) + mx + iωy), where P is an antiderivative of p. Then we have

b = ∂f0/f0.

Note that due to theorem 15 if the bicomplex function W is a solution of (20) then the complex
function W1 = Sc W is a solution of the stationary Schrödinger equation (17) where

ν1(x) = p′(x) + (p(x) + m)2 − ω2, (21)

and the function W2 = Vec W is a solution of equation (18) where

ν2(x) = −p′(x) + (p(x) + m)2 − ω2. (22)

Let us note that both Schrödinger equations (17) and (18) in this case admit separation of
variables. Nevertheless, this does not imply they can be solved explicitly. In general, this is
not the case. However, we will show how using our approach and Bers’ theory for both of
them one can construct in explicit form a locally complete system of exact solutions.

Consider equation (20). It is easy to see that the pair of functions

F = f0 and G = k
f0

(23)

represents a generating pair for (20). Note that F = eσ and G = e−σ k, where σ = α(x)+β(y)

and α(x) = P(x) + mx, β(y) = iωy. For a generating pair of such special kind, it is easy to
construct a successor [3]. Let τ = −α(x) + β(y). Then the pair F1 = eτ and G1 = e−τ k
is a successor of (F,G). Moreover, (F,G) is a successor of (F1,G1). Thus, for (F,G) we
obtain a complete periodic generating sequence of a period 2 in explicit form (for explicitly
constructed, in general, non-periodic generating sequences in a far more general situation we
refer to [12]).

The fact that we have a generating sequence in explicit form implies that we are able
to construct the corresponding formal powers of any order explicitly and therefore to obtain
a locally complete system of exact solutions of the Dirac equation with a scalar potential
depending on one variable as well as of the stationary Schrödinger equations (17) and (18)
with potentials (21) and (22), respectively.

As a first step, we construct the adjoint generating pair (see definition 8):

F ∗ = −f0k and G∗ = 1

f0
.

Next, we write down the expression for the (F,G)-integral:∫



W d(F,G)z = 1

2

(
f0(z1) Sc

∫



W(z)

f0(z)
dz − k

f0(z1)
Sc

∫



f0(z)W(z)k dz

)
.

By definition, the formal power Z(0)(a, z0; z) for equation (20) has the form

Z(0)(a, z0; z) = λF(z) + µG(z),
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where the complex constants λ and µ are chosen so that λF(z0) + µG(z0) = a. That is,

Z(0)(a, z0; z) = λ exp(P (x) + mx + iωy) + µ exp(−(P (x) + mx + iωy))k.

In order to obtain Z(1)(a, z0; z) we should take the (F,G)-integral of Z
(0)
1 (a, z0; z), where

Z
(0)
1 (a, z0; z) = λ1F1(z) + µ1G1(z),

with λ1F1(z0) + µ1G1(z0) = a. Thus,

Z(1)(a, z0; z) =
∫ z

z0

(λ1F1(ζ ) + µ1G1(ζ )) d(F,G)ζ

= 1

2

{
exp(P (x) + mx + iωy) Sc

∫ z

z0

exp(−P(x ′) − mx ′ − iωy ′)

× (λ1 exp(−P(x ′) − mx ′ + iωy ′) + µ1 exp(P (x ′) + mx ′ − iωy ′)k) dζ

− exp(−P(x) − mx − iωy)k Sc
∫ z

z0

exp(P (x ′) + mx ′ + iωy ′)k

× (λ1 exp(−P(x ′) − mx ′ + iωy ′) + µ1 exp(P (x ′) + mx ′ − iωy ′)k) dζ

}

= 1

2

{
exp(P (x) + mx + iωy) Sc

∫ z

z0

(λ1 exp(−2(P (x ′) + mx ′)) + µ1e−2iωy ′
k) dζ

− exp(−P(x)− mx − iωy)k Sc
∫ z

z0

(λ1 e2iωy ′
k − µ1 exp(2(P (x ′) + mx ′))) dζ

}
where ζ = x ′ + y ′k.

For Z(2)(a, z0; z), by definition 12, we have

Z(2)(a, z0; z) = 2
∫ z

z0

Z
(1)
1 (a, z0; ζ ) d(F,G)ζ, (24)

where Z
(1)
1 (a, z0; ζ ) in its turn can be found from the equality

Z
(1)
1 (a, z0; z) =

∫ z

z0

Z
(0)
2 (a, z0; ζ ) d(F1,G1)ζ. (25)

We note that due to periodicity of the generating sequence containing the generating pair (23),

Z
(0)
2 (a, z0; ζ ) = Z(0)(a, z0; ζ ).

The adjoint pair for (F1,G1) necessary for the (F1,G1)-integral in (25) has the form

F ∗
1 = −eτ k and G∗

1 = e−τ .

Thus,

Z
(1)
1 (a, z0; z) = 1

2

{
exp(−P(x) − mx + iωy)

× Sc
∫ z

z0

exp(P (x ′) + mx ′ − iωy ′)(λ exp(P (x ′) + mx ′ + iωy ′)

+ µ exp(−P(x ′) − mx ′ − iωy ′)k) dζ − exp(P (x) + mx − iωy)k

× Sc
∫ z

z0

exp(−P(x ′) − mx ′ + iωy ′)k(λ exp(P (x ′) + mx ′ + iωy ′)
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+ µ exp(−P(x ′) − mx ′ − iωy ′)k) dζ

}

= 1

2

{
exp(−P(x) − mx + iωy) Sc

∫ z

z0

(λ exp(2(P (x ′) + mx ′))

+ µe−2iωy ′
k) dζ − exp(P (x) + mx − iωy)k

× Sc
∫ z

z0

(λe2iωy ′
k − µ exp(−2(P (x ′) + mx ′))) dζ

}
.

Substitution of this expression into (24) gives us the formal power Z(2)(a, z0; z), and this
algorithmically simple procedure can be continued indefinitely. As a result, we obtain an
infinite system of formal powers which at least locally gives us a complete system of solutions
of (20) in the sense that any regular solution of (20) can be approximated arbitrarily closely by
a finite linear combination of formal powers (formula (15)). Moreover, as the corresponding
generating sequence is periodic, theorem 14 is valid, and therefore we can guarantee the
convergence of a Taylor expansion in the formal powers to a corresponding solution of (20)
in some neighbourhood of z0.

A similar procedure also works for equation (19). Note that the pair of functions
F1k = eτ k and G1k = −e−τ is a generating pair corresponding to (19).

As any solution of the Schrödinger equation (17) with the potential ν1 defined by (21) is
the scalar part of some solution of (20) and any solution of (18) with the potential (22) is the
vector part of some solution of (20), the scalar and the vector parts of the constructed system
of formal powers give us locally complete systems of solutions of (17) and (18), respectively.

This last result can also be interpreted in the following way. Consider the equation

−�f + νf = ω2f in � (26)

where f is a complex twice continuously differentiable function of two real variables x and y,
and ν is a complex-valued function of one real variable x, ω is a complex constant. Suppose
we are given a particular solution f0 = f0(x) of the ordinary differential equation

−d2f0

dx2
+ νf0 = 0. (27)

This implies that we are able to represent ν in the form ν = p′ + p2 where p = f ′
0/f0. Then

we observe that (26) is precisely equation (17) with m = 0 in (21). Thus, our result means that
if we are able to solve the ordinary differential equation (27) then we can construct explicitly a
locally complete system of exact solutions to (26) for any ω. For this one should consider the
bicomplex Vekua equation (20) and follow the procedure described above for constructing the
corresponding system of formal powers. Then the scalar part of the system gives us a locally
complete system of exact solutions to (26).
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